III Semester M.C.A. Examination, January 2019
(CBCS Scheme)
MCA 303 : THEORY OF COMPUTATION

Instructions:
1) Part – A: Answer any 5 questions (5x6=30).
2) Part – B: Answer any 4 questions (4x10=40).

PART – A

Answer any five full questions.
(5x6=30)

1. What is finite automata? What are its applications?

2. Define NFA and E-NFA. Explain with suitable example.

3. Explain Chomsky’s Hierarchy of grammar.

4. Construct a DFA
 a) String starts with ab or ba.
 b) To accept even number of 0’s and even number of 1’s.
 (3+3)

5. Design a DFA to accept decimal strings divisible by 5.

6. Eliminate unit productions from the grammar:
 S → Aa|B|Ca
 B → aB|b
 C → Db|D
 D → E|d
 E → ab

7. Write a note on pumping lemma for regular languages.

8. Explain primitive recursive functions and μ-recursive functions.
PART - B

Answer any four full questions. (4x10=40)

9. Find DFA equivalent to the following:
 \[N = \{(q_0, q_1, q_2), \{a, b\}, \delta, q_0, \{q_2\}\} \]
 where \(\delta \) is defined as follows:
 \[
 \begin{array}{c|cc}
 & a & b \\
 \hline
 q_0 & (q_0, q_1) & q_2 \\
 q_1 & q_0 & q_1 \\
 q_2 & _ & (q_0, q_1) \\
 \end{array}
 \]

10. a) Obtain an NFA for the regular expression \(ab(a + b)^*a \). (5+5)
 b) Show that \(L = \{0^n 1^n \mid n \geq 1\} \) is not regular.

11. a) Explain Instantaneous description of PDA. (4+6)
 b) Obtain a Turing machine to accept the language \(L = \{0^n 1^n 2^n \mid n \geq 1\} \).

12. Find a CFG without E - productions, unit productions and useless productions equivalent to the grammar defined by
 \[S \rightarrow aA|aB|C \\
 A \rightarrow aB|E \\
 B \rightarrow aA \\
 C \rightarrow cCD \\
 D \rightarrow abd \\
 \]
 Also express the simplified grammar in CNF.

13. Find the minimized DFA from the given transition table.
 \[
 \begin{array}{c|cc}
 & 0 & 1 \\
 \hline
 q_0 & q_1 & q_2 \\
 q_1 & q_0 & q_2 \\
 q_2 & q_3 & q_2 \\
 q_3 & q_3 & q_3 \\
 \end{array}
 \]

14. Write short notes on the following:
 a) Cook's Theorem
 b) NP - Completeness.
III Semester M.C.A. Examination, January 2016
(CBCS)
COMPUTER SCIENCE
MCA 303 : Theory of Computation

Time : 3 Hours
Max. Marks : 70

Instructions: 1) Answer any five questions from Section – A, each carries
six marks.

2) Any four questions from Section – B, each carries 10 marks.

SECTION – A

Answer any 5 questions. Each question carries 6 marks. (5x 6 = 30)

1. What is finite automata? What are the applications of finite Automata? 6

2. Define NFA and ε-NFA. Explain with suitable example. 6

3. Define Regular Expression. Explain the meaning of the regular expression
(a+b)*. 6

4. Define context free grammar. Show that if L1 and L2 are context free languages
then L1 U L2 is also context free. 6

5. Construct a pushdown automata that accepts the following language.

\[L_{01} = \{ 0^n 1^n | n \geq 1 \} \] and illustrate its working. 6

6. Define Turing Machine. Explain Turing Machine model with its components. 6

7. Write a note on pumping lemma for regular languages. 6

P.T.O.
8. a) Define \(\mu \)-Recursive function.

b) Convert the following CFG to CNF

\[
S \rightarrow 0A|1B \\
A \rightarrow 0AA|1S|1 \\
B \rightarrow 1BB|0S|0
\]

SECTION - B

Answer any 4 questions. Each question carries 10 marks. \((4 \times 10 = 40) \)

9. Construct a Deterministic finite Automation (DFA) for the following:
 a) The String Ends with 10.
 b) Even number of 0's and odd number of 1's.
 c) To accept the language
 \[
 L = \{W : |W| \text{ mod } 4 = 0 \} \text{ on } \Sigma = \{0, 1\}
 \]

10. a) Explain parse tree and its properties.
 b) Convert the following NFA into an equivalent DFA:

11. a) Define PDA and Instantaneous description of PDA.
 b) Obtain a PDA to accept the language \(L(M) = \{W_{CR}/W_{R}(a+b)^* \} \) where \(W_{CR} \) is the reverse of \(W \) and hence say whether its is a Deterministic PDA or not.